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Preface

The inherent harmony of periodic motions as well as of symmetry has exerted
its own fascination, as it seems, ever since the dawn of thought. Today, such a
“harmonia mundi” is at least hoped for on just about any poesxble scale: from
elementary particle physics to astronomy. o S

In search of some harmony let us ask naive questions. Suppose we are given a
dynamlc‘al system with some built-in symmetry, Should we expect periodic motions
which somehow reflect this symmetry? And how would periodicity harmonize with
symimetry?

These almost innocent questions are the entrance to a labyrinth of intricacies.
Probing only along some fairly safe threads.we are lead from dynamics to topology,
algebra, singularity theory, numerical analysis, and to some applications. A global
pomt of view.will be one guiding theme along,our way: we are mainly interested
in periodic motions far from equilibrium.

For a method we rely on bifurcation theory, on transversality theory, and on
generic approximations. As a reward we encounter known local singularities. As a
central new aspect we study the global interaction and interdependence of these
local singularities, designing a homotopy invariant. As a result, we obtain an index
X which evaluates only information at stationary solutions. Nonzero ¥ implies
global Hopf bifurcation of periodic solutions with certain symmetries. Putting it
emphatically, ¥ harmonizes symmetry and periodicity . Curiously, ¥ need not be
homotopy invariant.dt is one of my favorite speculations that this obstruction may
hint at chaotic motions.

Cyclic motions relate to cyclic groups. Phrasing this relation between dyna-
mics and algebra less sloppily: the symmetry of a periodic solution of a dynamical
system is related to a cyclic factor within the group of symmetries of that system.
Curiously, some period doubling bifurcations relate to the number 2, acting by
multiplication on such a cyclic group. The multiplicative order of 2 relates to the
number of possibly different indices ¥ for a given system.

Symmetry, though beautiful, causes numerical difficulties. Basically, groups
with irreducible representations of higher dimensions entail higher local singula-
rities which are not very well understood. This is an obstacle to numerical path-
following algorithms. We will give a complete list of the easier, lower-dimensional
generic bifurcations. Avoiding cyclic loops in the associated global bifurcation dia-
grams by a suitable homotopy invariant will be a central issue in our theoretical
analysis. Both aspects are essential prerequisites for an efficient numerical path-
following method in dynamical systems with symmetries.

In real applications, as in real life, the lofty regions of harmony, periodicity,
and symmetry are always confronted with the abysmal danger of destabilization.
Surprisingly, there are still some applications where periodicity and symmetry is
observed. We will concentrate on chemical waves as a model example below, though
the theory is general. We obtain rotating waves (spirals) in continuous geometries,
and phase-locked oscillations in discrete geometries.
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s1. Introduction

§1.1 The question

We would like to find time-periodic solutions z(t) of a nonlinear autonomous dynamical

system
z(t) = f(X z(1)), (1.1)

In applications, such systems always contain parameters (coefficients). Let A € 4 := R denote
one of them. Finding periodic solutions is usually more difficult than finding stationary, i.e.
time-independent solutions z(t) = z¢. Stationary solutions (Ao, zo) satisfy

zeX:=RN, fec!

0 = f(Xo,%0)- (1.2)
Hopf bifurcation draws conclusions on periodic solutions of (1.1) from information on sta-
tionary solutions (1.2); and here and below we mean “nonstationary periodic” when we say
periodic.

To describe local Hopf bifurcation suppose for a moment that f(X,0) = 0, for all real A.
Assume that the linearization D, f(),0) at the stationary solution (A, 0) has a pair of simple

eigenvalues
A x18(A), B(A) >0 (1.3)
for small [A|. Then at least the linearized equation, at A =0, .
v=D.f(0,0)y (1.4)

has periodic solutions y(t) of minimal period 27 /8(0). If £18(0) are the only purely imaginary
eigenvalues of D, f(0,0), then the local Hopf bifurcation theorem, e.g. [Cra&Rab2], states
that (1.1) with f € C? has periodic solutions near A = 0, = 0. In fact, these periodic
solutions form a continous branch and their minimal periods are close to 27 /£(0). Without
a parameter A, i.e. for fixed A = 0, such a result could not hold in general.

The result above is called “local”, because it only finds periodic solutions in some possibly
very small neighborhood of A = 0, z = 0. Global Hopf bifurcation finds periodic solutions
which may be far away from this neighborhood, where they originated. The first result in
this direction is due to Alexander & Yorke {Ale&Y1], see §1.3 and in particular (1.29) for
more details. Global Hopf bifurcation is our main concern here. Of course, global bifurcation
implies local bifurcation.

Global as well as local bifurcation results require essentially some change of stability. Let
us explain this with our previous example, f(A,0) = 0. Denote

E()) : the number of eigenvalues of D, f(X,0) with strictly positive (1.5)
real part, counting algebraic multiplicity.

In other words, E()) is the unstable (“expanding”) dimension of the stationary solution
(A,0). Then assumption (1.3) on the crossing of the pair of eigenvalues A + 13()) through
the imaginary axis implies that E()) changes by 2 as X increases through zero. We call this
a “change of stability”. Our principal goal will be an index ¥ which evaluates changes of
stability in such a way that ¥ # 0 implies global Hopf bifurcation.
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Mot v

However, we are interested in dynamical systems (1.1) with symmetry. Throughout we
assume ‘

PR AR

I is a compact Lie group, acting orthogonally on X == RN by a (1.6a)
linear representation p.

In other words:
p:I— O(n)

v+ p(7)

is a homorphism from the compact Lie group I into the group O(N) of orthogonal N x N-
matrices. See e.g. [Bre, Bro&tD, Sat& Wea] for generalities on Lie groups and representations.
For practical purposes, we may assnme that p(y) = id only for y = id . This allows us to view
T as a closed subgroup of O(N). A short-hand motation for the action of I is 7z :== p(7)z,
forye I', z € X. To tie up the group I" with our system (1.1), we require f to be equivariunt
with respect to the action p of T, i.e.

Pl U R

2 x

;.

Fvzy=f(M\z), foraliyel, Ae R, z&RV. (1.6b)

Then (1.1) remains unchanged, if we replace x by yx. Thus, if z(¢) is a solution of (1.1),
then 7z(t) is also a solution, regardless what 7 € I" we choose. See e.g. [Satl, Vanl] for a
reference on bifurcation theory for equivariant f.

'If z(t) is a periodic solution of system {1.1), then z(t) may describe the same trajectory
as z(t) for suitably chosen -y € I'. In fact 7 could leave each point of z(¢) fixed, individually.
Or « could leave the periodic orbit {z{t)jt € R} fixed, as a set, possibly phase-shifting the
individual points on it. In both cases we say that 4 belongs to the symmetry of the periodic
solution z(t). For more precision see §1.2, definition 1.1. This notion of symmetry leads us
to our principal gquestion:

(T A AP
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How can we find periodic solutions with prescribed symmetry? 1.7
For linear equivariant equations like {1.4), where D f(0, 0) has purely imaginary eigenvalres, . i
we might find periodic solution and their symmetry explicitly, knowing the representation -
of I' on the eigenspace. For results on local Hopf bifurcation for nonlinear systems with o
symmetry see e.g. [Go&:St1]. -
We approach question (1.7) from a global point of view, here. We design an index 9
+d
| Ho.Ko (1.8)
such that nonzero ¥ implies global Hopf bifurcation with certain possible symmetries. Again, e
¥ evaluates changes of stability of stationary solutions via purely imaginary eigenvalues in .
certain representation subspaces of X. For some more details see §1.4. A complete recipe is -

given in our main results: theorems 2.9 and 2.10 below.

Let us consider a first typical, but simple example: three identical, mutually coupled
oscillators. Such examples go back to Turing [Tu]. With z = (z,1;,32), z; € R", z € R*"
our example may be writien as

.y -.ﬁ-.j*,-".'- R
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Fig. 1.1 Three coupled oscillators

Ty = Ji(ro) +(z2 — 229 + 1731)
) = f(z1) + (20 — 211 + 22) ' (1.9)

-~

zo = f(z2) + (21 — 222 + Zo).

We suppress the parameter A, here. In fig. 1.1 we depict system (1.9) as an equilateral
triangle. The vertices stand for the oscillators 9 =,Z; =,Z» =, and the sides represent
“diffusive ” coupling. System (1.9) remains invariant under any permutation of the indices
{0,1,2}; the right hand side is equivariant under I" := §3, the symmetric group (permutations
of three elements). From fig. 1.1 we see that §3 is isomorphic to the dihedral group D3, the
group of orthogonal maps in the plane which leave an equilateral triangle invariant. System
(1.9) could oscillate periodically in various ways: homogeneously (zo(t) = z;(¢) = z2(t)), with
reflection symmetry (zo(t) # z3(t) = z2(t)), with fixed phase-shifts over one third period
between adjacent z;(t), or without any noticeable relation between the z;(t). Answering
question (1.7), our index X will allow us a detailed global analysis of these phenomena, cf.
§8.1. The first global results on such rings of coupled oscillators are due to Alexander &
Auchmuty [Ale&Au2]. They rely on a topological result on global bifurcation of zeros of
mappings with several (two) parameters [Alel, Ale&Fitz].

Our approach to question (1.7) is more geometrically inclined. Motivated by the “snakes”-
paper of Mallet-Paret & Yorke [M-P&Y1,2] we use generic, but somewhat equivariant appro-
ximations to the original problem (1.1). This will have the advantage that only a few types
of bifurcations occur, and global bifurcation diagrams can be understood systematically. We
discuss this in §1.5 and, in excessive detail, in §§3,5-7,10. In [M-P&Y1,2|, only the case of no
symmetry, I' = {id}, was considered. Another root for our approach was the elegant geome-
tric treatment of local equivariant Hopf bifurcation by Golubitsky & Stewart [Go&Sch&St,
Go&St1]. It inspired the very question (1.7), as well as our definition of symmetry of a
| periodic solution, and is behind the scene of most of our technical set-up.

Why should anyone be interested in a question like (1.7) 7 Our motivation is both “pure”
and “applied”. Symmetry prevails in many applied problems, e.g. oscillations in networks,

\;.\;.\:’\}V Wo 1% RN o

PR
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Fig. 1.2 A (clockwise) rotating spiral wave. courtesy of [Mii&Ple&Hess).

in fluid dynamics, and in chemical reaction diffusion systems. A spectacular example are the
rotating spirals in the Belousov-Zhabotinskii reaction, see fig. 1.2.

We devote §8 to such applications. Another “applied” goal is the development of quick,
flexible tests which detect oscillations and give some indication of their form in large distri-

buted systems. Paradoxically, global results apply more easily than local results (but do not -

allow conclusions on stability, direction of bifurcation, etc.). As a “pure” consequence we
obtain local bifurcating branches for situations which could not be treated in [Go&St1], see
theorem 9.1.

But local bifurcations, local singularities have been studied for quite a while now, even
in equivariant settings. Our analysis adds a significant global feature: we investigate the
interplay of these local singularities in global bifurcation diagrams. We believe that this
global feature can and should be incorporated into other contexts as well. Our problem of
global Hopf bifurcation with symmetry just serves as a model case.

Understanding the interplay of local singularities in global bifurcation diagrams usually un-
covers some topological relations and restrictions, like homotopy invariant indices. Knowing
these global restrictions, as well as the basic local singularities, is in turn a prerequisite to
a sucessful numerical homotopy method for concrete applications. The simplest example is
the monitoring of signs of determinants of the linearization, i.e. of Brouwer degree, to detect
stationary bifurcation points; see e.g. {Deu&Fie&Kun|. This closes the circle of “pure” and
“applied” motivations.
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§1.2 Symmetry of periodic solutions

Let us pin down what we mean by the symmetry of a periodic solution z(t) of the I'-
. equivariant differential equation (1.1). First we have to discuss “symmetries” of points z ¢ X.
‘ Given z € X the isotropy group I'; of z is defined as

- I;:={y€er|~yz=1z}. (1.10)
For example, consider the coupled oscillator system (1.9). If z = (z¢,z),22) with z, = 7} =
o then I'y = I'=83. Hzy # 23 = 12, then Iy, = {1d, (1 2)} =: ((12), 2 Z/2Z.

Conversely, given a subgroup K of I' we may define the fixed point subspace X of X by
XK .- {(ze XKz =1). (1.11)

So XK consists of all elements 7 of X with isotropy Iy at least K. In the example (1.9} we
have z € XU iffzo =2y =20, andze X1 2D iz, = zo. This last example shows that
XK may actually contain points z with I'y > K.

Throughout, we are interested in this typical case of a non-free group action where I'; may
depend on the choice of z # 0.

For solutions of (1.1) one would like to know I';. The significant property of the lineur
subspaces X¥ on the other hand, is their flow invariance:
2(0) € XK implies z(t) € XK, for all 1. (1.12)
Indeed, z € XK implies £ € XK | because

Ki=Kf()\z)=f()Kz)=f()1)= i

Now let us consider a periodic solution z(t) of (1.1} with minimal period p > 0. Let C :=
{z(t){ t € R} C X denote the trajectory of z(t). Then two relevant groups come to mind:

H:={yerl'[4C=C} (1.13.a)
K = I'I(t, = {’7 € Fl’YI(t) = I(t)} (ll3b)

Note that I',(,, is in fact independent of ¢ because, by flow invariance of the spaces XK,
z(0) € XT=) and z(t) € xT=0) 5. e Iy0) 2 Iyy) and Iy > Iy Thus K is well-
defined. Obviously, K is a subgroup of the closed group H. For any h € H, z(t) € C, we
have

h z(t) = z(t + 6(h) - p). (1.13.c)

Note that @(h) € R/Z is defined independently of ¢. In fact hz(t) solves the same differential
equation (1.1) as z(t) and the trajectories coincide as sets, by (1.13.a). Thus hz(t) coincides
with z(t), up to a phase shift.

The obviously continuous map

---------------



from H to the (additive) group R/Z is a homomorphism. Indeed

z(t + ©(h1h2) - p) = hihe 2(t) = by z(t + O(h2) - p) =
= z(t + (O(h1) + O(h2)) - p), ie.

O(hy he) = O(h1) + O(h2) (mod Z),

because p is the minimal period of z(t). By definition, ker® = K. By the homomorphism
theorem [vdW), Lang!, K is a closed normal subgroup of the Lie group H and

H/K = im6 (1.15)
may be viewed as a closed subgroup of R/Z, cf. |Bro&tD, §1.4]. Let

n-1
<R/Z, f <
n b R/Z, for n < oo (1.16.a)

1
Zy:={0,—-,...,

{ n

Z. =R/Z

denote the closed additive subgroups of R/Z. The cyclic groups Z, should not be mixed
up with the isomorphic groups

(1.16.6)
Z(x) =
With this notation, (1.15) implies that
H/K = {Zn, for some n < 00, or (1.17)
Z »

1.1 Definition :
Let z(t) be a periodic solution of system (1.1) with minimal period p > 0. We call the
triple (H, K, ©), defined by {1.13.a — ¢) above, the symmetry of z(t).

Referring to (1.17) above, we call z(¢) a

concentric wave if H = K
discrete wave if H/K>Z,, 1<n<oo
rotating wave if H/K=2Z, .

Let C C X be a set of stationary solutions of f(A,-), i.e.
f(A\,z)=0 forallz e C. (1.18.a)

We call C a frozen wave, if there exists 2o € C and subgroups K := I';, < H < T such
that the following two conditions hold:

C=H 1z (1.18.5)
K =1TI;,isnormalin H and H/K = Z . (1.18.¢)
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We call the triple (H, K, +0) the symmetry of the frozen wave C,if © : H — R/Z is any
surjective homomorphism with kernel K. '

We comment on definition 1.1. First of all, it seems redundant to include K = ker®
explicitly in the triple (H, K,©) which defines symmetry. Indeed, H and © alone would
suffice. Discussing secondary bifurcations it will be convenient to nevertheless keep track of
K explicitly.

In the symmetry (H, K,£8) of a frozen wave, the homomorphism @ is determined only
up to a sign. Indeed, © induces an isomorphism H/K — R/Z, and the only continuous
automorphisms of R/Z are given by multiplication with +1.

Condition (1.18.c) suggests that frozen waves are a pendant to rotating waves. Indeed, let
R be the infinitesimal generator of the action of H/K on XK. In detail: we represent this
action by orthogonal matrices, and obtain an isomorphism

v: Ze — HIK

1.19
t — exp(Rt). (1.19)

For some real a, consider the transformation
y(t) = exp(—aRt) z(t) (1.20)

on X® . Then y solves the equation

g(t) = —aR y(t) + f(A, y(t) = f(X,¥(2)). (1.21)

Choosing o = 1/p, it turns out that z(t) is a rotating wave for f iff H - z(0) is a frozen
wave for f. The transformation (1.20) tells us that a rotating wave “freezes”, if viewed in a
suitable rotating coordinate frame.

Conversely, let us start from a frozen wave z € C with symmetry (H, K,+6). Then the
transformation (1.20) yields a rotating wave y(t) with symmetry (H, K, ©) or (H, K, -6),
dependi;’ on the sign of a. Viewing this as a perturbation result we may say that a rotating
wave freezes and then starts rotating in the opposite direction, cf. definition 5.3 of a freezing,
and theorem 5.11.

Viewed still differently, (1.20) and (1.21) tell us that (A, z(t)) is a rotating wave if and
only if zg = z(0) with Rzg # 0 solves

= —aRzg + f(A, z0) (1.21)

for some a # 0. On the other hand, Hz( is a frozen wave if and only if zg with Rzg # 0
solves (1.21) fora=0.

Let us reinterpret symmetry of periodic solutions in an operator setting which is frequently
used in global Hopf bifurcation. We rescale the minimal period p of z(t) to 1, defining

£(r) = z(pr) . (1.22)
Then z(t) solves (1.1) iff £ solves

F(f,p, 0, 6) = —;;é+ fne=0 . (1.23)
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Denoting the Banach spaces of continuous resp. once continuously differentiable functions
with (not necessarily minimal) period 1 by ok resp. C!, we may view F(f,-,", ) for fixed f
as a map

F(f,,,):R*xRxC!'=C". (1.24)
Fixing also p, A, the map F(f,p, },-) is equivariant with respect to the action p of [:=TxS8!
on £ € CY or C! defined by

(A(7,9)€)(7) = p(n)E(7 ~ ¥), (1.25)

where we write S! for the additive group R/ Z.
We claim that z has symmetry (H, K,8) iff £, defined by (1.22), has isotropy

T¢ = HY := {(h,6(h)) | h € H}. (1.26)

As before, it is understood that K := ker®. To prove the claim, we follow the rea<oning in
[Go&:Stl, £6]. Applymg the definition of symmetry of z, it is sufficient to show that I‘g HY
for some subgroup H of T and some homomorphism 6:H S Letr:I'x S' - T
denote projection onto the first coordinate and define H := ﬂ'([‘f) Then [‘5 Nkerr = {id},
because £ has minimal period 1. Thus fE >~ H, and we may hence write f} as H? as was
claimed above. Following [Go&St1, §6] we call H® a twisted subgroup of I' x S§! with twist
o.

Fixing an isomorphism from Z, to H/K, we may represent the twist © by an integer
(mod n). Indeed, let hK generate H/K = Z, (assuming n < o00) and fix ¢ to be

L Z,— H/K

1.27
Lo, hK. (1.27)

Then
6(h) = (Bo(i) = € /n

for some ©* € Z(n). We will frequently identify h with 1/n and € with 6* € Z(n), writing
O6(h) =6 -h. (1.28) ]

Using the isomorphism (1.19) instead of (1.27), the case n = oo is treated similarly. Repre-
senting © by integers is particularly convenient for treating secondary bifurcations of periodic :
solutions, where & may change, cf. §5.

We illustrate our symmetry terminology with the triangle of coupled oscillators (1.9), see
fig. 1.1. Concentric waves, e.g., are periodic solutions z(t) with zo(t) = z;(t) = z(t). Their
symmetry is (H,K,0) = (I, I,0) where I' = §3. They satisfy z5 = f(zo), and diffusive
coupling can be ignored altogether. Another example is given by zo(t) # z;(t) = z2(t) with
H = K = ((1 2)), ©® =0. Such solutions satisfy

o = f(zo) + 2(z1 — 20)
i1 = f(z1) + (20 - 1)
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and represent two asymmetrically coupled oscillators. A discrete wave may have symmetry
H = {(12)),K = {id}, and © = 1, which means z5(t) = z)(t — §) and z¢(t) = zo(t - §).
Such solutions are sometimes called standing waves. Another type of discrete waves satisfies
H = {(0 1 2)), K = {id}, and @ = 1, which corresponds to

i.e. to fixed phase-differences between adjacent cells. Applying (1 2) € §3 to this solution we
obtain a discrete wave with © = 2 = —1 (mod 3), i.e. rotation in the opposite direction. For
examples of rotating and frozen waves see §8.2.

§1.3 Some references

The literature on bifurcation problems is vast. We give some standard references to the
field. Then we follow some of the threads to global bifurcation, concentrating on Hopf bi-
furcation. A more detailed attempt to put our results in perspective has to be postponed to
§9. As a general reference to local bifurcation theory we mention the books by Chow & Hale
[Chow& Ha], Golubitsky & Schaeffer [Go&:Sch], Guckenheimer & Holmes [Gu&Hol, looss &
Joseph [lo&Jo], as well as parts of Arnol’d [Arn3, ch.6], and Smoller [Smo, ch.13]. Bifurcati-
ons for iterates of maps are discussed e.g. in {lo]. Bifurcation theory for zeros of maps viz.
stationary solutions with several parameters is known as singularity theory or catastrophe
theory, see e.g. {Arnd, Arn&G-Z& Var, Go&Gui, Thom|.

More specifically, local Hopf bifurcation is named after E. Hopf. In [Hopf], 1942, he proves
the result which we have discussed in §1.1, assuming z € R™ and analytic f. His main
motivation, though, was hydrodynamics. Hopf himself mentions Poincaré, who has considered
the planar analytic Hamiltonian case being mainly motivated by periodically forced systems
in celestial mechanics, cf. [Poi, ch.XXX], 1899. The general planar case was discussed
extensively by Andronov and coworkers since 1929, see e.g. [And&Chai, And&Leo&Gor&Mai]
and the note in [Arn3, p.271]. In 1977 a proof covering the infinite-dimensional case was given
by Crandall & Rabinowitz [Cra&Rab2] in an analytic semigroup C2-setting. They just relied
on the implicit function theorem. Other modern accounts of local Hopf bifurcation, three of
them based on center manifolds, are given e.g. in the books of Chow & Hale [Chow&Ha,
§61.1.4, 3.4, 9.5, 9.6], Hassard & Kazarinoff & Wan [Has&Kaz& Wan}, Iooss & Joseph {lo&Jo],
and Marsden & McCracken [Mars&McCr].

The first global bifurcation result, concerning stationary solutions, is due to Rabinowitz
[Rab]. Returning to the setting f(A,0) = O with unstable dimension E(), as in (1.5), a
version may be phrased as follows. If E()) changes by an odd number, as X increases from
—00 to 400, then an unbounded continuum of stationary solutions bifurcates from the trivial
solution. The proof relies on degree theory, and we give a subjective version of it in §3; see
also [Chow&Ha, §5.8] and [Smo, ch.13].

As we have mentioned above, the first result on global Hopf bifurcation without symmetry
is due to Alexander & Yorke [Ale&Y1]; see also Ize [Izel]. They both introduce period p
explicitly as a parameter. In the above setting, suppose D, f(0,0) is nondegenerate, and
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D, f(X,0) has some purely imaginary eigenvalues for A = 0 but not for small 0 < |A] < e.
Assuming that

2(B(e)~ B(~¢)) s odd, (1.29)

they obtain a global bifurcating continuum € of periodic solutions, by topological arguments
involving stable homotopy theory. “Continuum” refers to the triple (p, A, £), and “global”
means that € is unbounded or returns to some other bifurcation point on the trivial branch.
Using Fuller degree [Ful], Chow & Mallet-Paret & Yorke [Chow&M-P&Y1] later relax con-
dition (1.29) to .

%(E(e) — E(-¢)) £0. (1.20)"
These results have one obvious and one subtle drawback. Obviously, we might not want to
call € “global”, if it remains bounded and just terminates at some other Hopf bifurcation
point. It is a more subtle aspect to construct examples of continua in (p, A, ) which are
unbounded, though A, ¢ and minimal periods remain bounded. A concrete example for this
important subtlety was constructed by Alligood & Mallet-Paret & Yorke [All&M-P& Y1}, cf.
§3.4 and fig. 3.3 below. This is possible because p in the operator setting (1.23) does not
necessarily stand for minimal period. In fact, if (p, A, £) is a solution then (p, A, £) is likewise
a solution, if we define

€8 (r) := €(k).
For a detailed discussion see §53 and 9.3.

Both drawbacks have been circumvented at the expense of introducing the notion of “virtual
periods”, cf. definition 1.2 below and §4. For generic nonlinearities f(A,z) the drawbacks
were fully remedied by Mallet-Paret & Yorke [M-P&Y1,2|, who follow continua (“snakes”)
in (A, z) and simultaneously keep track of minimal period. Virtual periods, as introduced by
Chow, Mallet-Paret, Yorke [M-P&Y2, Chow&M-P&Y2|, arise if one approximates f in (1.1)
by generic nonlinearities. Following |Fie2], we give a detailed outline of this no-symmetry
theory in §3 because it will be basic to our symmetry results.

Including symmetry, the books of Golubitsky, Schaeffer, Stewart [Go&Sch, Go&Sch&:St],

Sattinger {Sat1,2], and Vanderbauwhede [Vanl,5] treat local bifurcations extensively. For a
detailed study of local symmetry-breaking in elliptic equations see [Smo& Wal-3, Van3, Van5].
Concerning local Hopf bifurcation with symmetry we have mentioned {Go&St1]. Rotating
waves were also discussed, e.g., in [Au, Sche, Van2].

Global results are few in number. Globally-minded bifurcation of stationary solutions
with symmetry was achieved by Cerami [Cer}, Cicogna [Cic], and Pospiech [Pos]. They all
essentially pick a subgroup K of I" and proceed along the global result of Rabinowitz [Rab]
within the f-invariant subspace XK. We could imitate this for periodic solutions, because
XK is invariant under the flow (1.1) and the no-symmetry theorems from [Ale&Y1, Chow&M-
P& Y1, Izel, Ize2, Fie2] readily apply. For concentric waves (H = K, cf. §1.2) this approach
is certainly appropriate, but it is not for H > K : all information on H and the action of
6 along the periodic solution will be lost completely. We are aware of only two previous
results on global Hopf bifurcation with symmetry, which address this problem. Both are due
to Alexander & Auchmuty: see [Ale&Aul] for rotating waves in a reaction diffusion system,
and [Ale& Au2| for discrete waves in coupled oscillators.
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However, these results are obtained via an operator setting similar to (1.23). They prescribe
some symmetry (H, K, ©) for the periodic solutions z(t), roughly as in definition 1.1, i.e.

h z(t) = z(t + 6(h)§), forallhe H, (1.30)
but they do not know whether p is the minimal period p of z(t), or just some multiple kp of
it. This way they obtain H > H, but no information on 6. In fact one can only conclude
that ,

O(h) = k- 6(h) (mod 1) (1.31)

for some unknown k. For example, if im6 = H/K is finite then © may be identically 0,
picking k = |H/K|.

We are aiming at results which keep control of @ and, at the same time, remedy the two
drawbacks of the topology approach mentioned earlier. We return to a comparison with the
results of Alexander & Auchmuty in §9.4.

§1.4 Virtual answers

The key to our main results, summarized in theorems 2.9 and 2.10, is our notion of virtual
symmetry. “Mostly” virtual symmetry will coincide with symmetry, cf. definition 1.1. It is
defined as follows.

1.2 Definition : Let z = z(t) be a stationary or a periodic solution of
2(t) = f(0,2(2)) - (1.1)

We call ¢ > 0 a virtual period of z, and (I?,I?,é) a virtual symmetry of z, if there
exists a solution y of the linearized equation

u(t) = D= £(A, z(t)) y(t) (1.32)

such that the pair (z(t), y(t)) has minimal period ¢ and symmetry (H, f(,é) in the sense of
definition 1.1; in particular X
p(h) z(t) = z(t+ 6(k)-q)
p(h) y(t) = y(t+6(k)q)
forallhe H. Similarly, suppose f(A, z)=0and ye kerD; f(), z) is such that the pair (z, y)
lies on a frozen wave H - (z,y) with symmetry (H, K, :hG) in the sense of definition 1.1, i.e.

K= [(zy) = Iz NIy is the isotropy of the pair (z,y). Then we also call (H, K, +6) a
virtual symmetry of z.

(1.33)

Let us comment on this definition. The notion of virtual period is due to Chow, Mallet-
Paret, and Yorke, see [M-P&Y2, Chow&M-P&Y2]. To be precise we should call ¢ a “virtual
period of z with respect to f(A,-)” etc., but for brevity we don’t. Also, A is fixed in definition
1.2 and we might as well omit it.
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Note that the minimal period p > 0 and the symmetry (H, K, ©) of a periodic solution
z(t) are always a virtual period and a virtual symmetry of z, just putting y = 0 or also
y = . If 2 and its scalar multiples are the only periodic solutions of the variational equation
(1.32), then the minimal period is the only virtual period, and the symmetry is the only
virtual symmetry of z. In particular this is the case if the periodic solution z is hyperbolic.
In general z may have several, but finitely many, virtual periods and virtual symmetries. For
stationary solutions zg the above remarks apply analogously. Note however, that a stationary
solution z) has some virtual period and some virtual symmetry iff D, f(X, z¢) has some purely
imaginary nonzero eigenvalues, cf. lemma 4.8. Otherwise (z, y) is necessarily stationary and
its “minimal period” g is not positive. For a thorough discussion of virtual symmetry see §4.

Next we describe at least the general flavor of our main results, theorems 2.9 and 2.10. For
I-equivariant systems (1.1) we first fix any two closed subgroups K¢ < Hy of I'" such that
K, is normal in Hy and Hy/Ky = Z,, is cyclic, n < oco; the notation follows (1.16.a) above.
A priori, these subgroups Hy, Ko need not correspond to any symmetry (H, K,©) of any
periodic solution at all. Next we pick a certain subset d of Z(n), a so-called “binary orbit”, cf.
definition 2.4 and table 2.2. The set d describes some maximal orbit in Z(n) under iterated
multiplication by 2. Then we evaluate changes of unstable dimensions E(A) along stationary
solution branches as A increases from —oo to +00, in reminiscence of conditions like {1.29),
(1.29)’. These changes are counted in certain representation subspaces of Hy/K, = Z,,
acting on X®¢_ These representations are related to the binary orbit d. This information is
condensed in our integer-valued, global equivariant Hopf index

+d
}(Ho.Ko !

cf. definition 2.8.

The principal conclusion is that
Xﬁ:.h’o # 0 = global Hopf bifurcation of periodic so- (1.34)
lutions with virtual symmetry at least
(HOva9)9 KO < K < HO) O cd.

Here we work in the subspace XX0o where the cyclic group Ho/Kj acts canorically, and the
homomorphism  : Hy/ Ko — S is represented by an integer @ € d as in (1.28).

By “global” we mean that there exists a continuum of periodic solutions in 4 x X¥¢ which
is unbounded, or contains arbitrarily large virtual periods, cf. theorem 2.10. By “at least”
we mean that some virtual symmetry (H, K, ©) satisfies

H > Hy and 8|y, =o. (1.35)

Thus, by the isomorphism theorem [Lang, §1.4), Ho/K is isomorphic to a subgroup of H/K
because

Hy/K = Ho/(HonK) = (Ho-K)/K < H/K.

For rotating waves, i.e. for Hy/Kg = Z  and © # 0, there even exists an unbounded
continuum in 4 x X®o. Periods do no enter, except that frozen waves have to be included
in that continuum, cf. theorem 2.9. The theorems hold analogously for analytic semigroups,
cf. corollary 2.13, and for integral equations, cf. the techniques in [Fied]. For examples see
§8, and §9 for further discussion. The discussion includes a proof that local Hopf bifurcation

‘."."\. 4'*-;“ o
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o}
with maximal isotropy (in the sense of Golubitsky & Stewart [Go&Stl1]) always occurs, cf. :'_f
theorem 9.1 in §9.1. :i'
~
Commenting on our main result (1.34) we resume our discussion of virtual symmetry. j
Suppose that z(t) is periodic and the minimal period p is the only virtual period. We repeat, :
3 that this assumption is expected to hold for “most” periodic solutions. As a consequence, ::"
the symmetry (H, K,©) of z extends any virtual symmetry (H, K,0) of z, i.e. N
N
_ . - - ~
H > H, 6|y =6, "'
cf. lemma 4.11. For such solutions z we may thus drop the word “virtual” in the statement 2
. . . -,
(1.34) of our main result. We hasten to add, that this need not be true for virtual symmetries -
associated to non-minimal virtual periods. ﬁ‘:
&
Anyhow, there may exist suitable choices of Hy, Ky and homomorphisms € # 0 such that I
the triple (Hg, K, ©) cannot be extended, for group theoretic reasons. We give examples in
§8. Then at least “at least” can be dropped in (1.34). Note how important it is, here, to ’:
control @ such that it remains nonzero, because @ = 0 extends trivially to any group If > H. ,'.::
5
-~
§1.5 Generic approximations )
e
We obtain our results by generic approximation rather than by topological techniques. In ::::
this context genericity means the following. Fix closed subgroups Ky < H, of the compact -
Lie group I' such that K is normal in Hy and Hy/Ky = Z, is cyclic, n < oo, as before in o
§1.4. Note that H, leaves XX invariant. In fact, the normalizer N(Ky) of K, leaves XHKo
invariant, and Hj is just a subgroup of N(Kj). Still, we choose to ignore any symmetry R
above H,), defining :..;
_\f
7 : the space of f € C*(4 x XKo, XKo) which are equivariant (1.36) ‘_:ﬁ
in the sense of (1.6.b) with respect to the representation of 7
H; on X Ko, R
o
We endow 7 with the topology of uniform convergence on bounded sets. This makes ¥ a _::fj
Baire space |Di, Hirl], i.e. the countable intersection of open dense sets is still dense. o
1.3 Definition : -
A subset G of 7 is called generic, if it contains a countable intersection of open dense :::j
subsets of ¥. The elements of § are also called generic. A property is called generic, if it oy
holds for a generic subset of ¥. -
>
In §§5,10 we will prove that generically, i.e. for f in a generic subset § of 7, only certain o
types of Hopf and secondary bifurcations can occur, cf. theorem 5.11. Just as the classical {::
Kupka - Smale theorem [Kup, Smal], the proof relies on transversality theory or, more *'::
fundamentally, on Sard’s theorem [Ab&Ro]. The complete classification is possible only <
because all local singularities, reflecting just Ho/Ky = Z, equivariance, are completely @
understood. This is the reason why we fix the groups Ko, Hy, a priori, possibly at the :'_',\
expense of ignoring symmetries above Hy. :
3
e
!
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The advantage of the technically somewhat involved genericity result is obvious. We obtain :
a clear geometric picture of all possible global bifurcation diagrams. In particular, we can

keep track of minimal periods and of symmetries (within H/K() at bifurcation points. We T
may even follow branches such that the minimal period jumps discontinuously, e.g. at period

doubling bifurcations. This way we are much more flexible than any pureiy topological .
approach.

As a second step we construct a homotopy invariant index @ for periodic solutions, see

definitions 6.1 and 6.4. This index tells us which branches we may select to find a global
i bifurcating continuum of periodic solutions, in the generic case, cf. theorems 2.6, 2.7, and
§6. Also the index @ carries information which describes the global interaction of the local )
singularities. y

On the generic level, minimal periods and symmetries can still be controlled precisely. The
notion of virtual period and virtual symmetry comes in if we want results for general, not
necessarily generic, nonlinearities f. We have to approximate f by generic g;,

g —f
and get corresponding approximating periodic solutions
z; — I. N

It turns out that the limit of minimal periods and the limit of symmetries need not be a
minimal period and a symmetry of the limiting z. Rather they are a virtual period and a
virtual symmetry of z, cf. corollary 4.6.

For more details we refer the reader to §83, 7. In §3 we give an extensive description of
the genericity approach in the case of no symmetry (I' = {id}). For a concrete, geometric
study of the dynamic effects of a generic approximation on local Hopf bifurcation with I' = .
0O(2), H, = SO(2), Ky = {id} we recommend the interesting paper of v.Gils & Mallet-Paret :
& Takigawa [vG&M-P&Tak|. Of course, our generic approximations are more general but '
much less explicit.

§1.6 A grasshoppers’ guide h

In §1 we give an introduction which is basic to all the rest. It should be read first, and
completely.

¢ v e e

The main results are stated in technically precise form in theorems 2.9 and 2.10. The basic
definitions and assumptions are referenced there, to make these results directly accessible.

For examples one may then skip §§3-7 and 10 looking at §8, instead, and in particular at . by
§8.3. It is also possible to jump directly into the discussion in §9. For open questions, see .
especially (9.7) and (9.13). -

Another non-technical section is §3. We survey generic approximations in the case of no y

symmetry, indicating the analogous symmetry steps which occupy §§5-7 and 10. Our account
of virtual symmetry, §4, can be read independently. But it is used freely in §§5-7 and 10,
which constitute the technical center piece.
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In §5, we develop the complete list of genmeric secondary bifurcations for Hy/Ko = Z,,
equivariant vector fields, ¢f. theorem 5.11 and table 5.2. Proofs are deferred mostly to §10
where some transversality machinery is applied to establish genericity. The generic global
theory is then developed in §6. It includes the index & of periodic solutions, which describes
the global interaction of local singularities. Taking theorem 5.11 for granted, §§6,7 can again
be read pretty much independently of §§5,10. The approximation to nongeneric f is carried
out in §7. Virtnal periods and virtual symmetries enter crucially, there.

For a fairly brief summary of some of the results we also refer to [Fie5]. We wish all
grass-hoppers an enjoyable “hop(f)”.
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§2. Main results

§2.1 Outline

In this section we summarize our main abstract results in a technically precise setting. For
our general philosophy, we refer t, §1, and in particular to §1.4. We recall our distinction
between generic nonlinearities f and general “ nongeneric” f, see §1.5, as well as the notions of
concentric, discrete, rotating, and frozen waves with their symmetries (H, K, ©), cf. definition
1.1. The four arising cases are treated according to table 2.1. For example, our main result
on rotating/frozen waves for nongeneric f is contained in theorem 2.9.

rotating and frozen waves | any waves
f generic, §2.4 theorem 2.6 theorem 2.7
f nongeneric, §2.5 | theorem 2.9 theorem 2.10

Table 2.1: Guide to main results

Before we can state these results, we need a definition of a global equivariant Hopf index ¥¢
and, more basically, of the sets d of integers which keep control of @ along global branches.
The sets d are introduced in §2.3, definition 2.4. For ¥¢ we give separate definitions for
generic f with only cyclic equivariance group G = Z,, n < oo (¥Z : §2.4, definition 2.5)
and for nongeneric f with any compact equivariance group I ()(;:.Ko : §2.5, definition 2.8).
We conclude this section in §2.6 with some preliminary remarks on variants of our main
results, postponing a more thorough discussion to §9.

Throughout §2 we fix two closed subgroups Ko < Hy < I such that K, is a normal
subgroup of Hy, and

Hy/Ky = Z, = G, n<o, (2.1)

is a cyclic factor. We identify G with Hy/Ky. We are interested in global Hopf bifurcation
in XKo, and G acts on XKe, To align the nongeneric case (Ho, Ko) with the generic case G,
notationally, it is convenient to consider

i = f(Az) (2.1)

restricted to the invariant subspace z € XK0 and denote XX again by X. This way, we
have the cyclic group G = Z,, n < 00 acting on X in both the generic and the nongeneric
case. However, we explicitly write the global equivariant Hopf index as ¥ ;’;:‘ Ko below, for
the sake of clarity.
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§2.2 The generic center index

Throughout §2.2-2.4 we fix the following setting. Let G = Z,, n < oo, be a cyclic group
with orthogonal representation p on X = RN . For the nonlinearity f in (1.1) we assume

f e’ (2.2)

where the space 7 was defined in (1.36) and is understood with Hy = G, K¢ = id. This
means that f € C* is G-equivariant with respect to z € X. The highest regularity ct will
not be used before §2.4, entering via §§5,10 into the main generic results. In §2.2-2.3, f € C*
would be sufficient.

We begin to investigate generic local Hopf bifurcation by defining centers and generic
centers. The term “generic” center will be justified later (theorem 5.2): for generic f only
generic centers occur.

2.1 Definition :

Let H be a closed subgroup of G = Z,. We call (Ao,z¢) an H-center if f(Ag,z0) =
0,z0 € XH, and D; f(Xo,z0) bas some purely imaginary nonzero eigenvalues. In other
words® (Ay,Zo) s a stationary solution, invariant under H (at least), with some virtual
period (cf. definition 1.2).

Suppose (Ag, zy) is an H-center satisfying the following three additional conditions (2.3.a —
c)

D, f(Xg, zo) has only one pair {£ if(Xg)} of purely imaginary
eigenvalues and these eigenvalues are simple. (2.3.0)

In particular, 0 is not an eigenvalue and the stationary solutions near (Ag, zg) form a local
C4-branch (A, z(A)) with continued eigenvalues a(A) £ 18(A) of D, f(A, z(A)); of course a, 8
are real, # > 0. The usual transverse crossing condition for local Hopf bifurcation then reads

Dya(Xo) # 0, (2.3.b)

where Dy a()g) is the derivative of a(A) with respect to A at Ayg. These two conditions ensure
that local Hopf bifurcation occurs: there exists a local C3-branch

s = (A(s), z(s,°), p(s)), 0<s<e
of periodic solutions z(s, -) near zg with minimal period p(s) near 2r/8()o) and with (z(s,t)—
zo )/s approaching, for s — 0, an eigenfunction which corresponds to the eigenvalue i8(Xg) of

D, f(Xg, zg); for a reference see e.g. [Cra&Rab2]. This branch contains all periodic solutions
near (Ao, zy). We finally require the curvature condition

D2 A(0) # 0 (2.3.c)

for the bifurcating branch. This condition ensures that periodic solutions are hyperbolic for
|s| small [Cra&Rab2].
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2.2 Definition

We call (Mg, zy) a generic H-center if it is an H-center satisfying the additional conditions
(2.3.a — ¢). We call (Ag,z0) a generic center if it is a generic H-center for some H.

Given an H-center (Ag, zg), the group H acts on the joint generalized eigenspace of purely
imaginary eigenvalues. Given a generic H-center, H acts on the real two-dimensional eigen-
space of { £15()g) }. We may identify this eigenspace with € in such a way that solutions y
of the linearized equation

¥ = Dzf(Ao,z0) ¥

in this eigenspace are given by
y(t) = et flRo)t y(0), (2.4.a)

in complex notation. The action p of H on this eigenspace then takes the form
p(h)y =e*™ y, foralhe H< Z, < R/Z, (2.4.5)

where the integer r (mod n) characterizes p. Note that our choice of f(Ag) > 0 already
determines the complexification of the eigenspace by (2.4.a) and hence r is determined uni-
quely (mod n if n is finite) by (2.4.b) despite of the representations r and —r being (real)
equivalent, cf. [Ser]. It turns out easily (cf. lemma 5.1 below) that the symmetry of the
periodic solutions bifurcating from a generic H-center (Ag, zg) is given by (H, K,©) with

6 =r (mod |H|),

locally, provided that H = G, is the full isotropy of z;. Here © is represented by an integer
as was explained in (1.28).

This way the representations r enter into our definition 2.5 of the global equivariant Hopf
index ¥%. As a first step, we extract the relevant information on a change of stability,
associated to this representation r, by a generic center index §1".

For simplicity, we specialize to the case that (Ag.zg) is a generic G-center, i.e. a generic
H-center with H = G. As before, let (A, z(A)) denote the corresponding local stationary
branch with simple eigenvalues a()) £ i8()), a(Ag) = 0 < B(Xo). The space X& is invariant
under the G-equivariant linearization D; f(Ag,zg). Denote

E®(Xo) : the number of eigenvalues of D, f(Xg, Zo) | xc with positive (2.6)
real part, counting algebraic multiplicity,
r _ J lim,_osign(a(rg + €) — a(ro - €)), forr =,
X'00) = { oy (2.7

where r denotes the representation associated to a(A) £18(A) as in (2.4.b) above. So the local
crossing number x"(Ag) is +1 (resp. -1) if the pair a(A) £ 38()) crosses the imaginary axis
from left to right (resp. from right to left).
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2.3 Definition :
For a generic G-center (), zy) we define the center index by

U ' 0" (Ao, z0) = (-D)E Py (Ay), foro<r <. (2.8)

Note that [IJ" = 0, unless r' = r is the representation of G associated to (Ag, zy).

In case G = {0}, and hence r = 0, this center index reduces to the “no-symmetry” center
index 0 which was introduced by Mallet-Paret & Yorke [M-P&Y1,2]. Recall that a brief
account of the theory without symmetry will be given in §3.

§2.3 Binary orbits

The set d in )"l};((.l.h]. ,)(,'f comes in through 2 (“period doubling”), acting by multiplication
on Z(n)=Z/nZ :

2:Z/nZ - Z/nZ

re— 2r.

(2.9)

This is motivated as follows. At a generic center we have © = r by lemma 5.1 below. But at
secondary bifurcations the symmetries (G, K, ) and (G, K, ©) on the primary and secondary
branch may differ from each other. In fact

6 =6 or 26 (mod n) (2.10)

in the relevant cases; see §5 and especially corollary 5.13, (5.15) for more details. Seen from the
centers, (2.10) describes some global interaction between generic centers with representations
r, r’ differing by a power of 2 (mod n). We now give a formal definition of those subsets
d C Z/nZ for which a global equivariant Hopf-index ¥ will be defined below.

2.4 Definition :
We define a relation ~ on Z(n) = Z/nZ as follows: rj ~ rp :ff there exist nonnegative
integers 71, j2 such that .
'ry = 22m (mod n). (2.11)

The relation ~ is an equivalence relation. The set D(n) denotes the set of equivalence classes.
Equivalence classes d € D(n) are called binary orbits.

So binary orbits d are maximal (forward and backward) orbits under iterates of the mul-
tiplication map (2.9). Below, each choice of d will give rise to a global Hopf index )(,‘f and to
a global result, separately, ¢f. our main results and our summary in §1.4, (1.34). Ther {ore
we digress now to clarify the algebra of D(n) and to compute |D(n)|. We are indebted to A.
Brandis for helpful discussions on this aspect.

Decompose n into primes

v_1 Vo V1 Vi

Py P s

where n' is odd and the p; are distinct primes; py := 2 and v, := v. Correspondingly, we
have a ring isomorphism

¢ Z(n)—oZ(2u)Xz(Pl{')x"'XZ(P:“)
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from Z(n) to the direct product of the Z(p;"), see e.g. |Hasse, ch.4.2]. The projection onto )
Z(p;”) is given by ]

r (mod n) — r (mod p;j). q

Of course, the isomorphism ¢ induces a canonical bijection

D(n) — D(2) x D(p{*) x --- x D(p;*) )

\

Note that D(2") = {Z(2")} consists of a single element, and may thus be omitted. In :
particular :
[D(n)l = |D(n")] = [D(p{")] ... 1D(p*)]. (2.12.0) 3

It remains to determine |D(p"’)! for odd primes p,. Consider v; = 1, first. Obviously
p] i J J

where ord,‘,)(?) denotes the order of 2 in the multiplicative group (Z(p;))* = {1,2,...,p; - 1}.
Any nonzero class d has ord;,J.(Z) elements, in that case. The Artin conjecture claims that .

|D(F, )i attains its lower bound 2 for infinitely many primes; cf. e.g. [Sha, §§32 and 67|.
Using [Hasse, ch.2.5] it is possible to prove that for odd prime numbers p;

vy _ p] - l . d 1-1 -
|D(py)} =1 +§——Wd’.”(2) ged(p}, 5), (2.12.0)
N
where ¢ is chosen such that o
2=l = (p; +1)°, mod p;’, N
and gcd denotes the greatest common divisor. If the prime number p; is such that
Lt
2rm—1 2 modp?,
then formula (2.12.6) simplifies to
v . ;
ID(p,’)| = 1+vwi(p-1)/ord, (2) = 1+v;(ID(p;)l - 1), (2.12.6) q
because ¢ is prime to p;, in that case. If 2Pi~1 = 1 (mod p?) then p? is called Wieferich ::
square. Computer studies have shown that the only Wieferich squares with p; <3- 10° are r
given by 10932 and 35112, f. [Sha, §§39 and 69]. For a relation of Wieferich squares to the
restricted case of Fermat’s Last Theorem see [Sha, §52]. In general, we may only estimate
k o
ID(n) > JT(1+v;-(p; - 1)/0rd;, (2)) 2
7=1 .
k ’
> JJa+v;). ;
i=1 -
o
i
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In particular |D(n)| gets arbitrarily large. We omit proofs of (2.12.5), (2.12.b)' for brevity.
Instead, we refer to table 2.2. Some elements of Z(n) are represented by negative integers
there.

For a concrete example, pick n = 1986 = 2 - 3 - 331. By table 2.2:

|D(1986)| = | D(3)| - |D(331)] = 2 - 12 = 24.

n | D(n)| d € D(n)
1 1 (0)
3 2 (0) (1)
5 2 (0) (%1, £2)
7 3 (0) (1,2,4) (=1, -2, —4)
9 3 (0) (£1, +2, +4) (£3)
11 2 (0) (1, +2,£3, +4, £5)
13 2 (0) (£1,+2, £3, £4, £5,£06)
15 5 (0) (1,2,4,8) (=1, -2, —4, —8) (£3, £6) (+5)
17 3 (0) (%1, £2,+4, +8) (3, £5, £6, £7)
19 2 (0) (21,42, £3, £4, £5, 26, 7, £8, £9)
25 3 (0) (£1,+2,%3, £4, £6,£7, £8,£9, £11, £12) (25, £10)
127 19 (0) (1,2,4,8,16,32,64) etc.
331 12 (0) (21,+2, £4, +8, +16, £31, £32, £62, 64, +75, £83,
4124, +128, £150, £166) etc.
00 00 (0) (2* r)i>0, foranyodd re Z

Table 2.2: Some binary orbits

i
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§2.4 Generic global results
For a given n we now define |[D(n)| possibly different global equivariant Hopf indices )(,',{;
one index for each d € D(n). We strengthen assumption (2.2), f € ¥, requiring genericity:

f € ¥ is a generic, G-equivariant nonlinearity with only a (2.13)
finite number of G-centers.

Here G = Z, < R/Z, n < o0, as before. For our notion of genericity see §1.5 and in
particular definition 1.3.

2.5 Definition :
Let genericity assumption (2.13) hold, and choose any binary orbit d € D(n). Thern the
generic global equivariant Hopf index ¥¢ of the generic vector field f is defined to be

W=, (2.14)

red

where the sum ranges over all G-centers (cf. definition 2.1) and the center index " is defined
for generic G-centers (cf. definitions 2.2 and 2.3). For generic f, all G-centers are generic
G-centers, cf. theorem 5.2 below. For binary orbits see definition 2.4.

Using the terminology of definitions 1.1-1.3, 2.1-2.5 freely, we can now state our two main
results on global G-equivariant generic Hopf bifurcation.

2.6 Theorem :
Let the genericity assumption (2.13) hold for the cyclic group G = Z o = R/Z. Assume
that
¥+ ag#£0 (2.15)

for some nonzero binary orbit d € D(o0) \ {0}.
Then there exists an unbounded continuum Z C 4 x X consisting of generic G-centers,
with representations r € d U (—d), and of rotating and frozen waves with symmetry

(G, K,6) and 6 € d U (~d). (2.16)

2.7 Theorem :
Let the genericity assumption (2.13) hold for the cyclic group G = Z, n being finite or
infinite. Assume that

X # 0 (2.17)

for some binary orbit d € D(n).
Then there exists a global continuum Z C A x X consisting of generic G-centers, with
representations r € d, and of periodic solutions with symmetry

(G,K,8) and O€d. (2.16)'

3
L]

o f € 8 2_8

.."-
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Here global means that
Z is unbounded, or (2.18.a)
Z contains periodic solutions with arbitrarily large minimal period. (2.18.b)

The proof of these two results has to be postponed to §6 because it requires some insight
into generic local bifurcations which will be accumulated in §§5,10. But an account of the
case of no symmetry (i.e. n = 1), at least, will be given in §3 already.

At this stage, let us just compare the two generic results superficially. Theorem 2.7 is ,
reminiscent of the “snakes” result by Mallet-Paret and Yorke [M-P&Y2, theorem 4.1] - ex- '
cept for the control on symmetry , of course. In particular minimal periods may become
unbounded, with Z remaining bounded in 4 x X. For a discussion of this prominent aspect
(2.18.5) of global Hopf bifurcation see §9.4 and the references given there. The assumption
G =Z,d # {0} of theorem 2.6 singles out the case of rotating waves. In that case, theorem
2.7 of course still holds for either d or —d but periods might blow up. And then symmetry
keeps control: the only way that period may blow up for a rotating wave is by decreasing its
speed of rotation down to zero-it becomes a frozen wave, c¢f. §1.2. Theorem 2.7 will not carry
us beyond the frozen wave: at this point the continuum Z already becomes global because
(minimal) period blows up. But theorem 2.6 continues across the frozen wave. Changing A
further, e.g., the frozen wave may start rotating again in the opposite direction. This way,
centers with representations r and —r might interact. Therefore we consider the sum of the -
indices ¥4, and ¥ % in assumption (2.15). Without anticipating the discussion in §9 we note
here already, that rotating waves behave somewhat more like stationary solutions than like ‘
periodic solutions, globally, because period blow-up (2.18.b) can be circumvented.

€ 8 U ¢ v _ 6 &

§2.5 Nongeneric global results

We now turn to the case of general, “nongeneric” f € C1, fixing new assumptions. Recall
that f is assumed to be equivariant with respect to the compact Lie group I', cf. (1.6.a,b),
and Ho/Ko = Z,, n < 00, is a cyclic factor of I', cf. (2.1). We are aiming at periodic
solutions with (virtual) symmetry at least (Hy, K,0), Ko < K < Hy. Such solutions can
bifurcate only from Hy-centers (Ao, Zo), i.e. from centers o € XH0, cf. lemma 4.8. We need
some assumptions on the restricted linearizations

L¥o = Dyf(\z)xk, € L(XKo, xKoy (2.19)
at stationary solutions (A, z) € A x XXo, We require

the set of stationary solutions in 4 x XK¢ consists of a finite (2.20.0)
number of branches

(Mz'(A)edaxXxHo y=o,...T :

which are globally parametrized over A € A, and the eigen-
values of the linearization L,K"(;\) at (A, z/())) are always N
nonzero;

the set of Ho-centers (with respect to LK) is bounded and (2.20.0)
is contained in the union of these stationary branches;

Iy
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the linearization LIKO(’\) depends analytically on A near (2.20.c)
centers.

The restrictive aspect of assumption (2.20.a) is discussed in §9; cf. also remark 2.11. But
assumptions (2.20.b, c) are not particularly aggravating in applications, cf. §8. The analyticity
assumption (2.20.c) will be motivated in §4 (cf. lemma 4.10).

Defining the global equivariant Hopf index ¥ If:. K, for nongeneric f requires some prepara-
tion. Recall that Hy/Ky = Z,, = G acts canonically on XKo, and any L¥o commutes with
this action. Identifying real two-dimensional spaces with €, the real inequivalent irreducible
types p, of real representations of Z, are given in complex notation by

pr(h)z = €™z,  heZ, zeC,

(2.21)
reZ,0<r<n/f2

Of course, the cases r = 0, r = n/2 (for n even) should be read for scalar real z, to be
irreducible. For a background on these easy representations see again [Ser|. Mapping z into 2,
we note that p_, is real equivalent, but not complex equivalent, to p,. These representations

decompose X#¢ uniquely into real representation spaces X;°

xko = @ xko, (2.22)
0<r<n/2

the representation on X,K0 being given by a couple of copies of p,. Again L‘K"(z\) restricts
to each X,I‘ 0

LI = LMlgxo € LXK, XK0).
We denote unstable dimensions Ej(A) and net crossing numbers xj as
E[(X) : the number of eigenvalues of LT(A) with positive (2.23)
real part, counting algebraic multiplicity,
X[ = lm S(E[()) - E[(=))). (2.24)
A—+oo0 2

Note that E(}) is defined consistently with (2.6) since X6 = Xg"’, in the setting of §2.1.
The net crossing number x| counts how many conjugate complex pairs of eigenvalues of
L}(A) cross the imaginary axis from left to right as A sweeps through R. By assumptions
(2.20.4,b), x7 is a well-defined finite integer.

Comparing the net crossing numbers xj from (2.24) with the local crossing numbers x"(A¢)
from (2.7), a slight discrepancy arises which involves real versus complex representations.
Suppose we are in a generic case, i.e. only generic G-centers, G = Hy/Ky, occur in XKo
along our branches (A, z/(A)). Then

i = ) X + ) x"(N) (2.25)

branch { branch {

where the summation runs over all centers (Ao, z'(Ao)) on the branch (A, z!(})). The reason
is that we had to take real representations for the net crossing number xj, while for the
local crossing numbers x"(Ag) a natural complexification was selected by the linear flow on
the purely imaginary eigenspace, cf. (2.4.a,b). This natural complexification allowed us to
distinguish between x" and x~', locally, in contrast to the nongeneric case.

We can now define the global equivariant Hopf-index for nongeneric f.
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2.8 Definition : _

Let f € C! be I'equivariant (cf. (1.6.a,b)), Ho/Ko = Z,, a cyclic factor of I' (cf. (2.1)),
and assume that (2.20.a,b) hold. Choose any binary orbit d € D(n) (cf. definition 2.4 and
table 2.2). Then the global equivariant Hopf-index Nl:;:,i.h’o is defined as

i
0
Mok, = 2o > (F)EQely (2.26)
=0 redu(-d)

where E,O(,\), x[ are defined as in (2.23), (2.24), and (—I)Elo('\") is independent of the choice
of g € 4 = R by assumption (2.20.a).

In the setting of §2.1, with Ho/Ko = G = Z,, the generic index ¥ (definition 2.5) on
XXKo relates to the nongeneric index N;:.Ko (definition 2.8) by

-d
Natw, = ¥+ ¥, (2.27)

due to (2.25), if we approximate f by a generic G-equivariant nonlinearity on XKo, Such a
definition by generic approximation, which is common place e.g. in Brouwer degree theory
[Dei, Chow&:Ha] and which relates to the question of homotopy invariance of the index ¥, is

discussed more in-depth in §9.4. We can now state our main results for nongeneric f, at last,
recurring to the terminology of definitions 1.1, 1.2, 2.1, 2.4 and 2.8.

2.9 Theorem :

Let f € C! be I-equivariant as.in (1.1), (1.6.a,8), Ho/Ky = Z = R/Z a cyclic
factor of I" as in (2.1) and assume that (2.20.a,%) hold. Choose any nonzero binary orbit
d € D(oo) \ {0}. Finally, assume that the corresponding global equivariant Hopf index
N!?((.I,K(.’ defined in (2.26), satisfies

¥ilg, # O (2.28)

Then there exists an unbounded continuum C C A x XKo consisting of Hg-centers, of
rotating waves, and possibly of frozen waves, with virtual symmetry at least

(Ho,K,0), and 6 € dU(~d) (2.29)

for each element of C.
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2.10 Theorem :

Let f € C! be I'-equivariant as in (1.1), (1.6.a,b), Hy/Ko = Z, a finite or infinite cyclic
factor of I' as in (2.1), and assume that (2.20.a — ¢) hold. Choose any binary orbit d € D(n).
Finally, assume that

¥ilk, # O (2.25)

Then there exists a global continuum ¢ C 4 x X¥o consisting of Hy-centers and of periodic
solutions, with virtual symmetry at least

(Hp,K,0), and O €du(-d) (2 29)
for each element of C. The continuum C contains both (uncountably many) periodic solutions

and (at least) one center on one of the stationary branches (A, z!(A)).
Here global means that

C is unbounded, or (2.30.a)

C contains periodic solutions with arbitrarily large virtual periods. (2.30.6)

§2.6 Variants

We briefly discuss some variants of the preceding results which are useful in applications,
see §8.

2.11 Remark :

The nondegeneracy assumption (2.20.a) on the global stationary branches (A, zf(A)) can
be quite obnoxious, failing in applications. Sometimes it is more convenient to replace A x X
by an open subset ¥ C A4 x X, and work in ¥, Y N (4 x X¥0), etc., instead. Then theorems
2.9, 2.10 hold true if we replace the requirement for C C A x X to be unbounded by

C C Y is unbounded, or (2.30.a)
the closure of C intersects the boundary of Y,

in theorem 2.10 and, analogously, in theorem 2.9. For example, this allows us to take
Y = (4 x X)\{ all annoying stationary solutions}.
Or, if the set of Ho-centers is unbounded, contrary to assumption (2.20.5), we may take
Y = (-¢e)xX

and let ¢ become large. Or we may be interested in positive solutions z > 0 (component-wise)
and define Y accordingly. Or we may restrict attention to A > 0, etc., etc.
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2.12 Remark :
In §8 we are going to apply theorems 2.9, 2.10 in an analytic semigroup setting
diz = A(M)z+ f(A 2), (2.31)
cf. [Hen] for a technical background. Specifically, we assume the following.

A(}) is a C*-family of sectorial operators on a real Hilbert (2.32.0)
space X, with dense domain D(A())) which is independent

of A € R, and with compact resolvent. Further assume that

X, := D(A(X)¥), equipped with the graph norm of A(A)¥,

is independent of w for some w € [0, 1).

Here differentiability is understood in the uniform operator topology £(D(A(0)), X), where
D(A(0)) is equipped with the graph norm of A(0). For f we require
fect4x X,,X). (2.32.4)
The compact Lie group I' comes in via its orthogonal representation on X. We assume
f and A()) are equivariant with respect to I, i.e. (2.32.c)
fz) = (A z),
A(M)yz = 14(A)X,
forallye I, A € A, and z € X, resp. z € D(A(0)).
In case Hy/Ko = Z, = R/Z, we require for the canonical representation p of Hy/ K¢ on
X% in addition that
R:= Fp(h)h=o : XunXKo_ xKo (2.32.d)
is a bounded operator.
To express genericity in this framework, we define
7 : the set of f € C*(4 x (X, N X¥0), XKo) which satisfy
f(A,p(R)z) = p(h)f(A, Z) (2.33)

forall h € Hyo/Ko, A € A, and z € X, N XKo,

Again, we endow ¥ with the topology of uniform convergence on bounded sets. In this
topology, 7 is a Baire space: countable intersections of open dense sets are still dense; cf.
e.g. [Di, theorem 12.16.1]. Thus it makes sense to speak of generic subsets of #. By
compactness of the resolvent, the local semiflow defined by (2.31) is compact for any small
positive time. Indicating any necessary modifications, we will model our proofs of the “finite-
dimensional” theorems 2.6, 2.7, 2.9, 2.10 to fit to this infinite-dimensional case. With the
obvious modification

L¥o = (A()) + D:f(),3))|xxo (2.19)’

entering into the definitions 2.5 and 2.8 of the global equivariant Hopf index ¥ we then arrive
at

2.13 Corollary :
Under the additional assumptions (2.32.a ~ d), theorems 2.6, 2.7, 2.9, 2.10 still hold true
for analytic semigroups (2.31).
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s3 No symmetry — a survey

§3.1 Outline

Most of this chapter is intentionally didactic in character. We explain our basic concepts
of proof on a purely intuitive level and in the simplest possible case: that of no symmetry,
I' = {id}. For a technically complete treatment of this case see [Al&M-P&Y1,2, Chow&M-P,
Chow&M-P& Y2, Fie2, M-P&Y1,2]. There are no lemma-lemma-lemma-theorem strings in
this chapter. Instead we refer the reader to the appropriate places in §§4-7 and 10 where the
respective arguments are carried out in the symmetry context. We only give some precise
definitions, for later reference.

This chapter is organized as follows. In §3.2 we give a very brief account of global stationary
bifurcation in one parameter. We base this account on generic approximations, to relate it to
our approach. In §3.3 we describe the generic secondary bifurcations for periodic solutions:
turn and flip doubling. Introducing an orbit index @ in the case of no symmetry we finally
sketch a proof of the corresponding versions of theorem 2.7, in §3.4, and of theorem 2.10, in
£3.5.

§3.2 Global stationary bifurcation

The classical global bifurcation result for stationary solutions (no symmetry) is due to
Rabinowitz [Rab]. We describe it in a special setting which is convenient for us. We want to
solve

2(A,z}) =0 (3.1)

say for A€ A= Randz€ X = RN, | C2(A x X, X). Assume that there is a trivial -

branch of solutions
z(A,0) = 0, (3.2)

and that, for |A| large, all eigenvalues of the linearization L(\) := D,z(\,0) are nonzero.
The Brouwer degree at (1, 0), [Chow&Ha, Dei], is then given by

deg(),0) = sgn detL(\) = (-1)V . (=1)EXN) (3.3)

where E()) is the number of eigenvalues of L()) with positive real part, similarly to our
definition (2.23) of E"()). Let us finally assume that

deg(X,0) # deg(—A,0), forlarge A > 0. (3.4)
In terms of crossing numbers (see (2.24), (2.26), (2.28)) this means that

Jlim (E(3) - E(=4)) s odd. (3.5)

As in the proof of the Rabinowitz theorem [Rab, theorem 1.3] we may then conclude that
a global, i.e. unbounded, continuum of zeros (A, z) of z bifurcates from the trivial branch.
This result also follows from Ize [Izel, p.77].

(S (g

n SR P R I T

?J\




TRTRE )

NS

FR PR RY R RN AR R P P U ‘.t 8.8 48 ¢ ) oy vl » v . Ye Ris b-ma

---------------

R
\
b
- 29 - .
.l
Let us sketch an idea of proof, taken from {Chowd& Ha, §5.7], which indicates the method we N,
have in mind for the case of periodic solutions. As a start, let us assume that z is “generic”. N
Here, “genericity” will only mean that 0 is a regular value of z, i.e. (), () = 0 implies that pe,
the total derivative .
Dz (A, z) is surjective. N
o~
By Sard’s theorem [Ab&Ro] “genericity” holds, if not for # itself, then at least for some N
perturbations ~
g(), ) + ¢ (3.6) ™
with arbitrarily small constant vectors ;. Note that the trivial branch may get perturbed, .
or even get disconnected, by such a perturbation. A
In case z is “generic”, the solution set z71(0) C A x X is an embedded one-dimensional
C*-manifold, i.e. a locally finite union of C2-curves i,
= (AM(s), z(s)) R
Y
which are parametrized by arclength. Let us assign names to points on such curves, rigorously. v
: b9
~ \l
}I
3.1 Definition : o
We call a zero (Ay, z) of z z-regular if all eigenvalues of the linearization D;z(Aq, z() of a'-
z with respect to z are nonzero. ;
'
We call a zero (Ay,z0) = (A(sy), z(s¢)) of 2 a turn, if the following conditions (3.7.a — ¢) -~
hold. .
Dz()p, z¢) is surjective, but o
. . (3.7.a)
D;z2()g,zo) has a simple eigenvalue py = 0. "
In particular, the local stationary branch (A(s), z(s)) through (Ao, zy) = (A(s0), z(sg)) satis- :
fies D,A(sg) = 0 and D,z(sy) # O is an eigenvector of ug = 0. Let u(s) denote the local 1
continuation of ug to an eigenvalue of D,2(A(s), z(s)). We require a transversality condition .
D,u(so) # 0. (3.7.b) _;-
This condition turns out to be equivalent to the curvature condition ~
DZ)(s0) # 0. (3.7.c) -
A turn is drawn in fig. 3.1 below. As a variant we define a turn (A, ) of fixed points of a :E
map 2 € C3(4 x X, X) for later reference. We just require (Ag, zy) to be a turn for 'S
2(),z) ;= 2(\z) -1z, i
and assume in addition
the spectrum of D;2Z(Ag,zp) on the unit circle consists of (3.7.a)' "
only the simple eigenvalue 0. .
A
A
’.
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Restricting our class of “generic” g even further, one can conclude that for generic z the
solution set consists only of z-regular points and (isolated) turns. From the definition (3.3)
of Brouwer degree deg it is obvious that

deg(A(s), z(s)) € {£1}

stays invariant near z-regular points and, by (3.7.5), changes sign at a turn. In [Chow& Ha,
§2.11] this observation is used to prove homotopy invariance of deg under the homotopy
parameter A.

We can now prove the Rabinowitz result, for generic z. Just orient the solution curves
(A(s), z(s)) at z-regular points such that

A-deg increases (3.8)

along the oriented curves. By the above, we may extend this orientation consistently through
turns. By assumption (3.4), the curve segments (A, 0) for |A| large have opposite orientations
for A positive resp. A negative. Thus they belong to two different oriented curves. But
neither of these curves can remain bounded as we follow it inwards from |A| = oco. Indeed,
because they are embedded curves without boundary, they cannot pile up in any bounded
region. Thus each of these curves extends globally, away from 4 x {0}. Passing to a general,
nongeneric limit with these curves, one can then conclude existence of a global continuum
(not necessarily a curve) bifurcating from 4 x {0}. This is the Rabinowitz result.

The “usual” proof uses homotopy invariance of Brouwer degree directly. In constrast, we
introduce the generic (i.e. nondegenerate) version (3.3) of Brouwer degree above in an ad-hoc
fashion to orient our generic curves. Simultaneously, we can conclude homotopy invariance
of Brouwer degree from its homotopy invariance at turns, as is done in [Chow&Ha, §2.11].
Of course, homotopy invariance of Brouwer degree can be established by other means. For
example we mention the algebraic topology approach [Do, Dug|. For periodic solutions we
favor the “generic” approach because it allows us to select curves along which the minimal
period jumps discontinuously, if we prefer. Alternatively one may also reconstruct the more
topologically minded Fuller degree for periodic orbits this way, see {Ful, Chow&M-P].

§3.3 Generic local bifurcations

We begin to describe the generic bifurcations of periodic solutions in the case of no symme-
try. Recall that generic Hopf bifurcation was specified in (2.3.a — ¢) already; these conditions
specialize verbatim to the case of no symmetry.

To treat secondary bifurcations of periodic solutions into other periodic solutions, we
employ the usual concept of a Poincaré section with an associated Poincaré map, see e.g.
[Ab&Mars, ch. 7.1]. Let (Ag, zo) be on a periodic solution zg(t) of (1.1). Then the Poincaré
section § = {z9} + S’ is a local affine hyperplane through zg of codimension 1 in X, such
that o points out of S (e.g. S := {zo} + (Zo}). The Poincaré map IT is defined on a suffi-
ciently small neighborhood of z¢ in S: it maps z into the point where the positive trajectory
z(t), t > 0, through z first hits S again. We write, a bit sloppily,

(X, ): Sioc = S. (3.9)
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Obviously, bifurcation of periodic solutions (A, z(t)) from (Ay, zo(t)) is equivalent to bifurca-
tion of fixed points z of some iterate

[T,

from (Ag, zg). Such bifurcations are indicated by the linearization of IT. The eigenvalues of
D, 11 (Ao, z0)

are called (nontrivial) Floquet multipliers of (Ag, zg).

3.2 Definition :

Let IT(Xo,z¢) = zg. Then (Ag,zo) is called type O if no real or complex root of unity is
a (nontrivial) Floquet multiplier. We call (Ag,z¢) a turn if it is a turn of the map Z := JI.
We call (Mg, zg) a flip doubling if it is a flip of the map Z := IT.

Replacing S by X, here (Ao, z¢) is called a flip of an abstract map £ € C3(A x X, X) if
Z(Ap, z0) = z¢ and conditions (3.10.a — d) below hold. We do not require Z to be a Poincaré
map, for later convenience, cf. §5. In detail, we assume

D, Z(Ag, zy) has a simple eigenvalue u(Ag) = —1, with ei- (3.10.2)
genvector y,, and this is the only eigenvalue on the unit
circle.

In particular, there is a unique local C3-branch z = z, of fixed points of Z(),-) through
Iy = I,,. For the corresponding continuation u(A) of the eigenvalue py = u(Ag) = =1 we
again impose the transversality condition

Dyu(dg) #0. (3.10.b)

Then [Cra&Rabl] implies a pitchfork-bifurcation of fixed points of [Z(}, -)]® at (g, zo). The
unique bifurcating local C%-branch

(’\(s), z(s)) € Aloc x Sloca lsl <e¢
can be C2-parametrized such that

(A(0),z(0)) = (X0, Z0)
D,)(0) =0, D,z(0) = yo (3.10.c)
A(s) = A(=s), Z(A(s), z(s)) = z(~s).

We finally require the curvature condition (which does not follow from (3.10.5), this time)

D?)(0) # 0. (3.10.d)
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Fig. 3.1 A turn Fig. 3.2 A flip

A flip is depicted in fig. 3.2.

Poincaré /Poi, ch. XXXTI' discusses the turn bifurcation in the context of periodically forced
Hamiltonian systems with one degree of freedom. Note that a turn is called “type I” and a
flip doubling is “type II” in [M-P&Y2]. Below we will encounter sufficiently many “types”
to prefer a more descriptive terminology. For completeness we also note that a turn is called
saddle-node bifurcation if one half of the branch is stable, see [Ab&Mars, Chow&Ha, Gu&Ho,
Spal and a flip doubling is called period doubling in {Gu&Ho, Spa] and also flip in {Gu&Ho].

The important thing about generic Hopf bifurcations, turns and flip doublings is that, for
generic one-parameter f, they exhaust the zoo of bifurcations which involve only stationary
and periodic solutions. All other periodic solutions are then of type 0. This result extends the
Kupka-Smale theorem (the no-parameter case) and can be found in |Bru] for diffeomorphisms
(like IT), in [All&M-P&Y2| and [Med| for ODEs, and in [Fie2| for analytic semigroups. Note
that type O solutions are not necessarily hyperbolic, so bifurcations e.g. to invariant 2-tori
may well occur. But they do not figure as bifurcations to periodic solutions, in our context.
So these bifurcations are ignored. Including symmetry enlarges our list of generic secondary
bifurcations, because various symmetry-breaking effects have to be included. This list is
developed in §5 and summarized in theorem 5.11; see also table 5.2.

It is rather cumbersome to establish this complete list of generic secondary bifurcations,
even in the case of no symmetry. The basic idea, however, is simple . Linearizing Poincaré
maps along a branch of periodic solutions we obtain generic one-parameter families, i.e.
curves, of matrices. Given a complex root of unity ¢ € {+1, —1}, we may certainly perturb
this curve such that the associated curve of eigenvalues avoids ¢: the (real) codimension of
¢in € is 2. But if { € {+1,-1}, then we cannot avoid ¢ as an eigenvalue. Indeed, we
can pot perturb a curve of (simple) real eigenvalues into the complex region, and the real
codimension of ¢ in R is only 1. Still we may assume that eigenvalues, i.e. Floquet multipliers,
cross ¢ transversely giving rise to turns or flip doublings, respectively. A technically correct
implementation of this idea relies on transversality theory, developed e.g. in [Ab&Ro], which
boils down to Sard’s theorem. Complications arise already for the Kupka-Smale theorem:
the application of transversality theory requires a reduction to periodic solutions of certain
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L

p0!2p0,3p0,4p0,. p0’2p0 v3p0,4p0,..

Fig 3.0 The -jug-handle” of Alligood & Mallet-Paret & Yorke |[All&M-P&Y1].

minimal periods. For equivariant problems, we defer this whole topic of transversality to
§10.

§3.4 Global generic Hopf bifurcation

With the list of generic local bifurcations at hand we would now like to detect a global
branch of periodic solutions in the situation of theorem 2.7, but without symmetry, i.e.
G = {0}, n = 1. For a reference see [M-P&Y1,2]. Similarly to the stationary case we would
like to follow branches of periodic solutions, orienting them globally. Obviously we need some
“degree”, some “index”: ¢. But a problem immediately arises. At a flip doubling, three arcs
of periodic solutions join together, fig. 3.2. Following a global path of periodic solutions
beyond a flip doubling we have to decide which way to go. The index & should tell that.
But even worse, we might loop back onto a previously followed path at a flip doubling, as
an example of Alligood & Mallet-Paret & Yorke [All&M-P& Y1)} with z € R* shows, cf. fig.
3.3. The classical “resolution” of this difficulty is to consider global Hopf bifurcation as a
two parameter problem, including period p as an additional parameter [Ful, Ale&Y, Izelj;
for an equivalent setting see (1.23) and §1.3. Note that the “jug-handle”, fig. 3.3, provides
an unbounded continuum in (p, A, z) beca.se the period p is not required to be the minimal
period. Indeed, suppose we enter the Joop from the left with p = py being the minimal
period. Tracing out the loop counter-clockwise, the period p gradually increases to 2pg as
we return to the flip doubling point A. By continuity of p, we have to view A as a periodic
solution with (nonminimal) period 2p. Following the same loop repeatedly, we arrive at A
with (nonminimal) period 4pg, 8pp and so on. Thus periods become arbitrarily large though
the example looks perfectly bounded at first sight. Because primary and secondary periodic
solutions near a flip doubling are linked in R3, the lowest possible dimension for such an
example is z € R*; but see also [Ale&Y2].

el ! "“’{:.:‘

o

-,

?
5 5"

XN

- :,"' -',.-.‘ Y

L e Te b FE AU N )
2Ll S



T I ) P R

- 34 -

The orbit-index @, constructed by Mallet-Paret & Yorke [M-P&Y2], resolves the “jug-
handle” difficulty as follows. Let 0% resp. 0~ denote the number of real Floquet-multipliers
of a type 0 periodic solution (A, z) in (1, 00) resp. (—o00, —1), counting algebraic multiplicities.
Then

P\, 1) = {(-—l)"+ if o~ s even, (3.11)
0 if o7 isodd.

is called the orbit index of (A, z). In other words,

o = (07" 4 (-t (3.11)
The index @ is in fact homotopy invariant. Choosing arcs with ¢ # 0 then tells us which
way to go at a flip doubling. Indeed, ¢~ changes parity along the primary branch at a flip
doubling (A, zp), by definition 3.2, (3.10.6). Thus @ # 0 to one side of (Ay, zp), and ¢ =0
to the other side, on the primary branch. By homotopy invariance, @ # 0 on the secondary
branch. Consequently, branches with ¢ # 0 extend to a unique path through (g, z¢).

Following branches with @ # 0, we will never enter a loop as in fig. 3.3, and get trapped.
Indeed @ # 0 on the secondary branch, by the above. By definition 3.2, or directly by
homotopy invariance, ¢ changes sign at the turn but stays nonzero. Thus the whole loop
consists of solutions with @ # 0 ({except for the turn and the flip doubling). Consequently,
@ = 0 on the remaining half of the primary branch and it is impossible to get trapped in the
loop entering it with @ # 0 from outside.

For discrete cyclic symmetries, the orbit index @ is introduced in definition 6.1. The proof
of homotopy invariance, proposition 6.2, covers a substantial part of §6.

For global bifurcation of stationary solutions we assumed some odd net crossing (a change
of degree) in (3.5). The analogous assumption for periodic solutions without symmetry is
given by (2.14), (2.17)

¥ = > b # o (3.12)
centers
We omit the binary orbit d = (0), n = 1, and r = 0 in this case. Recall definitions 2.2 and 2.3
of the center-index flof a generic center (Ao, zo) with bifurcating local branch (A(s), z(s, -)) of
periodic solutions. By exchange of stability, ) of (Ao, Zo) and @ of (A(s), z(s,-)) are related
by
& = [ sgn(A(s) —Ag), forsmalls, (3.13)

cf. [M-P&Y?2, fig. 7.1]. The symmetry analogue is proved in proposition 6.3.

With these preparations in mind we can now sketch a proof of our generic theorem 2.7 in
the case of no symmetry G = {0}, n = 1. Analogously to the stationary case we may orient
(C0-)curves (A(s), z(s, -)) of periodic solutions of type 0 with @ # 0, globally, such that

A-Q increases (3.14)

along the oriented curve. By homotopy invariance of ¢, we may extend this orientation consi-
stently through turns and flip doublings. Maximal oriented curves which begin or terminate
at some center are called “snakes” in [M-P&Y2]. Let § C 4 x X denote a snake which is
bounded together with its minimal period. Then § originates at some center (Ao, zg) and,
by maximality and boundedness, terminates at some other center (A, z{) if we follow the
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orientation of §. By exchange of stability (3.13), the center-indices Presp. B’ at (A, z¢)
resp. (A}, z}) satisfy
h=+1, ¢ =-1L (3.15)

Note that i1+ i’ = 0. Conversely, because ¥ = ) (# 0 by assumption (3.12), there exists
a snake Z which is unbounded or contains arbitrarily large minimal periods. This proves
theorem 2.7 in the case of no symmetry. With all the ingredients at hand, the proof of
theorem 2.7 in the case G = R/Z will actually be quite similar, see §6.6.

§3.5 Global nongeneric Hopf bifurcation

It remains to comment on the general nongeneric result, theorem 2.10, in the case of no
symmetry I' = Hy = Ky = {id}. Brushing subtleties aside, for a moment, we approximate
the nonlinearity f by generic nonlinearities

g9i— f- (3'16)

By assumption (2.28) we know ¥ # 0 for f, which implies ¥ # 0 for the g;. This yields global
snakes Z; for g; and we may put
C:= "lim"Z, (3.17)
1

to obtain a global continuum C of periodic solution for f, as required in theorem 2.10.

Subtleties arise as follows. We have to make precise the “lim” in (3.17) and ensure C is
actually a continuum. This will be based on lemima 7.1 below, following [Why]. Then ¢ will
indeed consist of (stationary and) periodic solutions for f. But note that the minimal period
of the limit might be only a fraction of the limit of minimal periods. In particular: why
should C be global with respect to periods, even if the Z; are? This is the place where the
notion of virtual period comes in. Indeed, the limit of minimal period is still a virtual period
of the limit [M-P&Y2, Chow&M-P&Y2]. Thus we will have arbitrarily large virtual periods
of C if the Z; stay uniformly bounded and have arbitrarily large minimal periods. On the
other hand, if the Z; do not stay uniformly bounded then ¢ will be unbounded. In any case,
C is then global. Is it, really? In principle, the Z; could collapse to a continuum C which
consists only of centers while virtual periods on C are unbounded. As in [Fiel], it requires
analyticity assumption (2.20.c) and a quite careful construction of the Z;, including continua
Z! C Z of uniformly large virtual periods, to overcome this last subtlety.

Including symmetry complicates the situation by the notion of virtual symmetry. The de-
tails fill §4. The approximation problems are covered in §7. Note however that the appearance
of rotating and frozen waves in theorems 2.6 and 2.9 is special to SO(2)-symmetry and has
no counterpart in systems without symmetry. Curiously, these rotating/frozen waves appear
as a hybrid between the global results for stationary resp. for periodic solutions discussed
above. Indeed turns and flip doublings occur, generically (theorem §.11). But we may ex-
tract bifurcating continua (of rotating/frozen waves) which are unbounded in 4 x XX¢,
without caring about minimal or virtual periods too much. This is reminiscent of the global
one-parameter result of Rabinowitz. With this apparent synthesis we conclude our didactic
excursion into a world without symmetry.
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§4. Virtual symmetry

§4.1 Outline

The notion of virtual symmetry, which we discuss in this section, is central to the idea
of proving global results by (generic) approximation f; — f. Any approximation faces the
following problem. Let £;(-) be a sequence of periodic solutions, with minimal period p; > 0
rescaled to 1 and with symmetry (Hoo, Koo, Oco) independent of 1. The §; thus satisfy

F(fi, 2, &iypi) = ‘“;_:féi‘*'fi('\ivfi) = 0. (4.1)

Assume f; — f, A; = A, & — £, pi — Poo in the appropriate spaces. Then £ is itself
a periodic or stationary solution, but its minimal period p need not be ps, and even if
P = Poo then the symmetry (H, K, ©) need not be given by (Hoo, Koo, Bc0). In general, po
is only some multiple of p, and even if poo = p then oo 1= HEZ% is only a subgroup of
X := H? < I x S!. In other words, minimal period and symmetry are not stable under
limits.

In §3.5 we have noted that virtual periods were introduced by Chow, Mallet-Paret, and
Yorke [M-P&Y2, Chow&M-P&Y2; to remedy this problem, as far as minimal periods are
concerned. Below, we employ the notion of virtual symmetry to take care of the symmetry
aspect as well. In fact, it turns out that the whole idea of virtual period can be subsumed
under the symmetry point of view with no additional effort. In §4.2 we give a general
definition of virtual isotropy which looks rather “stationary”, and then state stability under
limits in proposition 4.3. In §4.3 we observe that virtual symmetries and virtual periods are a
special case of virtual isotropies. As a consequence virtual symmetries and virtual periods for
periodic solutions are well-behaved under limits, cf. corollary 4.3. We conclude this section
with three lemmas which involve virtual periods and virtual symmetries and which are stated
for later reference.

§4.2 Virtual isotropy

We develop our concept of virtual isotropy in reasonable generality though we apply it
only in the special setting (4.1), later. Therefore we deviate from the established notation
to formulate definition 4.1 and proposition 4.3. Let =, =' be Banach spaces with continuous
actions of the group I on 5 resp. 5'. Here ' does not denote the dual space of . Consider
a I'-equivariant C'-map

F: 5% (4.2)

such that
F¢) = o (4.3.0)

for some ¢ € Z, and such that DF(¢) is Fredholm [Kato].
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4.1 Definition : :
Let F(£) = 0 as above. A subgroup I of I' is called a virtual isotropy of { with respect
to F if there exist elements y!, 32, - of Z such that

DF(¢) Y = 0, for all 3, and (4.3.6)
12y = X (4.3.¢)

Here f(f_yn'yz._.,) = fé N (ﬂjzx f’ ;) denotes the isotropy of (¢,y!,y2, -} with respect to

the obvious diagonal action of I.

4.2 Remark : ) ,
Certainly X' < I, for any virtual isotropy X. Picking y? = 0 for all j we see that the

isotropy fé of £ is always a virtual isotropy of €. But in general, it may depend on F whether
some given L' < I'¢ is called a virtual symmetry or not. If I'; acts trivially on ker DF(),
then ¥ = f€ is the only virtual isotropy of €. This holds in particular if ker DF(£) = {0}.
If, on the other hand, fE does not leave each element of ker DF(£) fixed then other virtual

isotropies besides f"f occur as well. Therefore we have to keep F' in mind whenever we speak
of virtual isotropy. But for brevity, we will not mention F explicitly whenever the context is
definitive.

Infinitely many y’ are used in our definition above. Because DF(¢) is Fredholm, finitely
many would actually be sufficient: we may put y/ = 0 for § > dim ker DF(¢). Indeed, we
may renumber the y? such that

span{y’ [1 <j <oc} = span{y’ |1 <] <dim ker DF(£)}.

But then
dim ker DF(§)

o - ~
ﬂ’"y:‘ = ﬂ r

j:] j:l

proving our claim above.

4.3 Proposition :
Let " be a compact Lie group, and F; a sequence of I- -equivariant C!-maps from = to =’
with F;(£;) = 0. Assume that

fi_‘fooa
I’}_‘Foo:

C!-uniformly on some closed neighborhood V of ¢o, and that
DFoo(§oo)

is a linear Fredholm operator [Kato]. Finally assume

the fixed subgroup X of I is a virtual isotropy of & with (4.4)
respect to F;, for each 1.

Then Lo, is a virtual isotropy of £, with respect to Fo.
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Proof :

The proof consists of a careful application of standard Ljapunov-Schmidt reduction, and
proceeds along the lines of [Pos, theorem 3.2,1]. There, the case f’iw =T 50 = T, was
considered in a slightly different technical setting. We are indebted to Christoph Pospiech
for suggesting this approach. :

Let P, Q denote projections onto ker DFo(€éco), im DFeo(€oo), respectively. Because I’
is assumed compact , P and @ can be taken f‘foo-equivariant (cf. e.g. [Vanl]). Choose
y},y?, ... € ker DF(§;) such that

T,

(&iylw?.) < Lo

To simplify notation define

€ =P~ €w) £ 1= (id ~ P)(& — €co)-
The following two claims will be proved below for large enough 1:
Tty = Teonly, (4.5)
FE'. N vaj = Ign I‘y{ ) for all ;. (4.6)

s

Using (4.5) and (4.6), the proof can be completed as follows. Obviously, I-‘fw > Yoo by
continuity and because 1-“& > Y. This implies

Flwer Pyt pyzy = LD (ﬂ Ppy{) =
izl

= Tg,n (ﬂ(ffimf‘l’y{)) =

j21

= I¢,nlgn Iyl =
i21

By construction, Eil and all Py{ are in ker DFo(€00). Thus Lo, is a virtual isotropy of oo,
a nd it remains only to prove (4.5) and (4.6).
To prove (4.5) we define the evaluation map

v: CcYV,5)x Yp— Q=
W(F, €1, €2) := QF(fco + €1 + €7)

where €1 := P(£ - £), €2 = (td - P)(€ - €c0), and Vg := V — €4 is V shifted to the origin.
By construction, ¥ is C}, ¢ -equivariant in (€1, €2),

w(Fm,O, 0) = 0’ and
Dep¥(Fe,0,0):  (id-P)Z — QF

e 2 R

. @ e~

.
v

¥

o

.....................
-----

----------



is an isomorphism. By the implicit function theorem, any solution of
V(F,¢' 6% =0

has the form
¢ = (R ¢,

for F near Fe, if 7 is chosen small enough. By uniqueness, ¢2(F,) is fgm-equivariant.
Because f? = £2(F;, .fll) we thus obtain

Femnrei = Pfooﬂr€'1+£3 = I‘fmﬂfez = I“(Emf‘x,

and (4.5) is proved. ' :
To prove (4.6) we note that DF;(£;)y] = 0 and hence

QDF(&)(id - Pyy] = - QDF(&)Py].
This equation can be solved for (id — P)y;'.". Indeed
QDF(&):  (d-P)E — QF,

being a small perturbation of QDF(¢x), is an isomorphism for large enough :. Thus
(id — P)y] depends fei-equivariantly on Py] and (4.6) follows as (4.5) did. This completes
the proof of proposition 4.3.0

4.4 Remark :
Below we will apply proposition 4.3 in the special case that

is the isotropy of §; itself. Putting y{ = 0 for all 7,5 in the proof of proposition 4.3, and in
particular in (4.7), it is then clear that for ¢ large enough

oo = Tgge

is a virtual isotropy of €00, With y! := f’-l and all other y/ = 0. Thus a single element of
ker DF(£) is sufficient to represent the virtual symmetry L.

Following [Fied]| we may arrive at global Hopf bifurcation results for integral equations
via two successive approximations: first a generic approximation with a nongeneric ODE-
result (this step is our main concern here) and then an ODE-approximation to the integral
equation. It seems impossible to achieve this by a single approximation step, say by passing
to a diagonal sequence. According to the proposition given above, we may then need two
elements of ker DF(&g) to represent the virtual symmetries on the second (integral equation)
level. It is not clear at present whether there is a more natural concept of virtual isotropy,
stable under limits, which would involve only £co and a single element y! of ker DF (€00 )-
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4.5 Remark :

Compactness of the group I' is used only in proposition 4.3. It enters into equivariance of
the projections P and Q. Indeed projections can be made equivariant using the Haar measure,
see [Vanl, theorem 2.5.9]. If 5 and =’ are both Hilbert spaces with orthogonal action of I,
we may drop the assumption that I' is compact. Just take orthogonal projections for P and

Q.

§4.3 Virtual symmetry

After these generalities on virtual isotropy we return to the specific problem of periodic
and stationary solutions in the setting (4.1). Recall our definition 1.2 of virtual period and
virtual symmetry: z(t) has virtual period ¢ > 0 and virtual symmetry (H, K, 6) if there
exists a solution y(t) of the variational equation such that the pair (z, y) has minimal period
g and symmetry (I?, f(,é) From proposition 4.3 we derive

4.6 Corollary :
Let I' be a compact Lie group and f; a sequence in C!(A x X, X), I-equivariant in z € X,
with nonstationary periodic solutions (A;, z;(-)) of minimal period p; > 0. Assume that

Ay & Aso in A,
Pi ™ Poo in R,
z;(:) & Zool) in C°(R, X), and
fi = Jfoo
C!-uniformly on bounded subsets of X. Finally assume
(H,K,6) is the symmetry of z;(-), for all ¢. (4.8)

Then (H, K, 6) is a virtual symmetry and po is a virtual period of zZoo(').
Likewise, let (A;,z;) be on a rotating or frozen wave of f; with symmetry (H,K,O) or
(H, K,+0), independent of 1. Then (), z;) satisfies

~o;Rz; + fi(Xi,2) =0, (r.21) |

as in §1.2. Assume

a; — Qe in R,
;() > Zoo in X,and
fi & Jfoo
C!-uniformly on bounded subsets of X.
Then z is

on a rotating wave, or (4.9.0)
on a frozen wave, or (4.9.8)
a center in X¥, or (4.9.¢)
a stationary solution in X¥ with (4.9.d)

dim(XE Nker Dy f(hoorZoo)) > 2.

Moreover, (I?,f(,é) is a virtual symmetry of zo, in cases (4.9.a,c) and (H,f(,ié) is a
virtual symmetry of zo, in case (4.9.b).
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Proof : _;-\.
Consider the periodic case first. We apply proposition 4.3 to the setting (4.1). Define ._:
.,::
&ilr) = =z(pir) ‘s
Fi = F(fis’\ia')pi)' ::-;
o
- - o
Then F; is a Cl-map from = := C!(R,X) to EZ':= CY(R,X). In §1.2 we have already :;
mentioned equivariance of F; with respect to I" := I' x S! acting by ::

\

A1, 9)6() = p()&:(- — ). (1.25)

Obviously our assumptions guarantee F;(}§; = 0, { — {c In C_'O(R,X) and F; — Fy, C'-
uniformly on bounded subsets of C!(R, X), if we define

L
NN

By c"l. (3

WY

€oo(T) = Zoo(PooT)

4.10
Fooo = F(fom Ao s Peo): (4:10)
Because F;(&;) = 0, (4.1) implies §; — € even in él(R,X). Note that Fu, is Fredholm
[Vanli, §2.2:. Finally,

~

Lo = H' = {(h,6(h)|he H)

is the isotropy of &;, for each 1, as was noted in (1.26). Thus o is a virtual isotropy of €.
By remark 4.4, a single y! € ker DFoo(€o) suffices to represent this virtual symmetry:

O
H - P(fooyl)

It remains to reinterpret this virtual isotropy on the £oo- level as a virtual symmetry of the
periodic solution ze,. First note that po, > 0. Otherwise £5, and y! are both constants, by
(4.1}, and consequently

(id,9) € I ., = H® = T
for some ¥ € S!\ {0). This is a contradiction, because £; has minimal period 1. Thus ps
is indeed positive. The same argument shows that the minimal period of the pair (£o0,¥!)
is 1. Rescaling this minimal period 1 by y(t) := y!(£/po ), to become pyo, identifies po. as a
virtual period and (H, I?,é) as a virtual symmetry of z,,. This completes the proof of the
periodic case.

Now consider the case of rotating and frozen waves. Passing to the limit in (1.21)’ we get

4

LN
'y *r

L Y 2 ]

~000RZoo + foo(AooyZoo) =0

If Rzoo # 0, aco # 0, then zo, is on a rotating wave:

A A

Zoo(t) = ezp(acR)zoo(0).

SN NN N

Likewise, the z; are on rotating waves for ¢ large enough. In particular their minimal periods
are eventually bounded:
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cf. (1.19). Passing to a subsequence, the p; may therefore be assumed to converge. Then
the first part of corollary 4.6 shows that (ﬁ,ﬁ’,é) is indeed a virtual symmetry of z.., as
required in (4.9.a).

If Rzoo # 0, aoo = 0, then T is on a frozen wave. Transforming the systems f;, foo with
some fixed € > 0 to

“y(t) = exp (—eRt)z(t)
!i(’\ay) = _€2y+fi(’\ay)
foo(X, ) = - eRy + foo(A, ),

as in (1.20), (1.21), this case reduces to the previous one because yo,, becomes a rotating
wave, cf. case (4.9.b).

If Rzo = 0, then foo(Aoo,Zoo) = 0. Thus z, is a stationary solution in XH. We may
apply proposition 4.3 directly to

Fi(z) := —a;Rz + fi(Xi, 1)

with z = £ € X = £ = =, this time. Because K is the isotropy of each z;, we conlude that
K is the isotropy of a pair (2, yo) with

— oo RYo + Dz foo(Aoos Zoo)yo = 0.
In particular, this implies Ry, # 0. If aeo # O, then
y(t) == ezp(aoo Rt)yo
is a rotating wave solution of the linearized equation
¥ = D:ifoo(roorseo)y-

Thus Zoo is a center with virtual symmetry (H, K, é) cf. case (4.9.c). But if aso = 0, then

yo and Ry, # O are linearly independent elements of XX N ker D, foo(Aoo, Zoo), cf. case
(4.9.d). This completes the proof of corollary 4.6. O

4.7 Remark :

Our notion of a virtual isotropy, of £ generalizes the notion of a virtual period of z in
the case of no symmetry I' = {¢d}. In fact, p > 0 is a virtual period of z if and only if
L := {(id,0)} < I':= T x §! is a virtual symmetry of

£(r) := z(pr)
This follows directly from definitions 1.2, 4.1 and the following claim. Given y’ € ker DF(¢)

with .
Negry2y) = {(1d,0)}. (4.11.a)

there exists a single y € ker DF(£) such that

Ly = {(d,0)). (4.11.5)
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To prove this claim we may assume, by remark 4.2, that only finitely many y’ are nonzero,
say those with j = 1,---,7. Defining

;
y = Y&y,
i=1

(4.11.b) holds for “most” ¢;. Indeed, suppose on the contrary that (4.11.b) does not hold.
Then the minimal period of the pair (£,y) is less than 1. Thus 1/k is a period of (¢,y), for
sonme integer k > 1, i.e.

]
£(1/k) = £(0) and Y e[y’ (1/k) - ¥ (0)] = 0. (4.12)

i=1

By (4.11.a), 1/k cannot be a period of (y!,-- ‘,y;). Thus the set of (g, - ,sj), for which

(4.12) holds, defines a hyperplane in R’ of codimension at least one. Varying k € IN we
conclude that (4.11.b) holds for “most” ¢;, namely for all those (), - - ,ej) which do not lie
on any of the countably many hyperplanes. This proves equivalence of (4.11.a) and (4.11.5).
Thus virtual isotropy generalizes virtual period. In particular, all previous results [M-P& Y2,
Chow&M-P& Y2, Fie4| on limits of minimal resp. virtual periods being virtual periods become
a corollary to our proposition 4.3.

Our next lemma tells how to determine all virtual periods and virtual symmetries of a
stationary center {Ag,z) in terms of its purely imaginary eigenvalues and of the group
action on their eigenspaces. This recipe is included for completeness and because it exhibits
an interesting structure. This time, we complexify the linearization D, f(A¢,z¢) and the
representation p of I' to X := X @ 1X in the usual way. For y € X we denote by

Iz ((y)) == {7 € Iz 1 p(9){¥)" = (¥)°}

the set of those v € I';, which leave the space (y)°, the complex span of y, invariant. This
should be constrasted with

Ty = {1€Tslp(My = y}

For later reference, the lemma also extracts the virtual periods (but not the virtual symme-
tries) of a periodic solution. In view of corollary 4.6, examples for virtual symmetries are
given by the many generic secondary bifurcations listed in §5, table 5.2.
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4.8 Lemma :

Let (A, z9) be a stationary solution of (1.1) for which all eigenvalues of the linearization
D, f(Xo,z0) are nonzero. We denote the mutually distinct purely imaginary eigenvalues, if
any, by 18; with 1 < |j| < 7 and with the numbering 0 < Bj=—-P_;forj >0.

Then (Mg, zy) has a virtual period ¢ > 0 and a virtual symmetry (f{, K,(:)) if and only if
there exists a nonempty subset

JC{jl1<; <}

and eigenvectors y; € (XK)C of 1f;, for j € J, such that conditions (4.13.a — d) below all
hold. We denote the symmetry of (zo,;) by (Hj, K;,6,). Obviously

H; = TIy({y;))
KJ' = F(10~yj)
The conditions are the following:
g = lem{2r/B;|j € J}, (4.13.a)

where [cm denotes the least common multiple;

Histhesetofall he ﬂjé_, H; for which the congruences
q

27/B; 9 = 0;(h) (mod Z) (4.13.)
admit a simultaneous solution ¥ € R/Z, for all j € J;
éh) = 9 (mod Z) (4.13.c)
if ¥ is such that (4.13.b) holds; and finally
kK = [) k. (4.13.d)
JEJ

In particular (Ag,zo) is an H-center because A < I';, by (4.13.b). Moreover, (Ag, zg) has
at most 27 distinct virtual periods, by (4.13.a).

Now let (g, zy) be a periodic solution of (1.1) with minimal period p. Then g is a virtual
period of (Ag,zo) if, and only if, (Mg, zo) has primitive e;-th roots of unity, 1 < j < 7, as
Floquet-multipliers and ¢/p is the least common multiple of a subset of {e; :1<j5<j}. In
particular, the minimal period is always a virtual period.
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Proof :
First we consider a stationary solution (g, zy) assuming that (g, zg) has virtual period
q and virtual symmetry (H, K,0). Then there exists y(t) € X with minimal period ¢ > 0

satisfying
¥ = D;f(Xo,20)y (4.14)
such that (z(,y) has symmetry (f{, f(,é) By L? Fourier decomposition we may write
y(t) = Y geet3r/an, (4.15)
keZ
and y; # 0 implies that
18 =1k-2n/q
is an eigenvalue of D, f(Ag, zy) with eigenvec<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>